Das Radium, seine Darstellung und seine Eigenschaften / von Jacques Danne ; mit einem Vorwort von Charles Lauth ; mit zahlreichen Figuren.

  • Danne, Jacques, 1882-1919.
Date:
1904
    sich in fast gleichförmiger Weise über die Erdoberfläche verbreitet finden. Eine sehr große Anzahl von Körpern dürften sie enthalten, doch nur in sehr geringer Menge. Elster und Geitel ist es gelungen, sehr wenig aktive lehmige Stoffe aus Produkten zu ziehen, deren Aktivität der des Urans vergleichbar war. Verarbeitung der Pechblende. Die Verarbeitung der Pechblende geht in drei vonein- ander ganz verschiedenen Phasen vor sich. In der ersten Phase wird die Pechblende zunächst von allem darin enthaltenen Uran befreit. Seither geschah dies an Ort und Stelle der Förderung des Erzes. Die Rückstände dieser Behandlung enthalten stark radio- aktive Substanzen. Eine neue in der Fabrik vorgenommene Behandlung bezweckt die Trennung und Reinigung der Teile mit reichem Gehalt an Radium, Polonium und Actinium. Diese neue Vornahme bildet die zweite Phase der Ver- arbeitung. Ein jeder Teil wird hierauf für sich behandelt, um die darin enthaltene radioaktive Substanz darzustellen. Der das Radium einschließende Teil ist ungefähr 60 mal aktiver als das Uran; man entzieht ihm das Radium durch eine Reihe am radiumhaltigen Baryumbromid ausgeführter Fraktionierungen. Diese im Laboratorium vorgenommenen Fraktionierungen bilden die dritte und letzte Phase der Verarbeitung. Wir werden nunmehr die verschiedenen Phasen der Verarbeitung etwas eingehender prüfen. 1. Abscheidung des in der Pechblende enthaltenen Urans. Das zerkleinerte und zerriebene Erz wird mit Soda ge- röstet. Das Produkt dieser Behandlung wird zunächst mit warmem Wasser, um die löslichen Salze zu entfernen, hierauf mit verdünnter Schwefelsäure ausgelaugt. Die Lösung enthält ausschließlich Uran. Der unlösliche, früher als wertlos
    angesehene Rückstand wird sorgfältig gesammelt; er enthält die ungemein stark radioaktiven Substanzen. Seine Aktivität ist vier- bis fünfmal größer als die des Urans. 2. Behandlung des Kückstandes. Der Rückstand enthält hauptsächlich Blei- und Calcium- Sulfate, Silicium, Aluminium und Eisenoxyd. Außerdem findet man darin in größerer oder kleinerer Menge fast alle Metalle (Kupfer, Wismut, Zink, Kobalt, Mangan, Nickel, Vanadium, Antimon, Thallium, die seltenen Erden, Niobium, Tantal, Arsenik, Baryum usw>). Das Radium findet sich verstreut als Sulfat in diesem Gemenge und ist das wenigst lösliche der Sulfate. Die erste mit diesem Rückstand ausgeführte Operation besteht darin, ihn mit konzentrierter Salzsäure zu be- handeln. Die Substanz wird stark zersetzt und geht teil- weise in Lösung. Aus dieser Lösung kann man das Po- lonium und Actinium ausscheiden; das erstere wird durch Schwefelwasserstoff niedergeschlagen; das andere findet sich in den durch Ammoniak aus der von den Sulfaten ge- trennten und oxydierten Lösung niedergeschlagenen Hydraten. Das Radium bleibt in dem zunächst mit Wasser gewaschenen, hierauf mit einer konzentrierten kochenden Sodalösung be- handelten unlöslichen Teile, eine Maßnahme, mit welcher die Verwandlung der in der vorigen Reaktion nicht an- gegrifienen Sulfate bewirkt wird. Hierauf wäscht man die Substanz gründlich mit Wasser und unterwirft sie der Ein- wirkung von Salzsäure, die frei von Schwefelsäure sein muß. Auf diese Weise erhält man rohe Sulfate von radiumhaltigem Baryum, die zugleich Kalk, Blei, Eisen enthalten und auch etwas Actinium mit sich führen. Eine Tonne Rückstand liefert etwa 10 bis 20 kg Roh- sulfate, deren Aktivität 30 bis 60 mal größer als die des metallischen Urans ist. Alsdann nimmt man die Reinigung der Sulfate vor. Man läßt sie zu diesem Zweck mit einer konzentrierten Lösung
    Natriumkarbonat kochen und wandelt die gewonnenen Kar- bonate in Chloride um. Die mit Schwefelwasserstoff be- handelte Lösung liefert einen leichten Niederschlag von aktiven Sulfiden, der Polonium enthält. Man filtriert sie, oxydiert sie mit Kaliumchlorat und schlägt sie mit reinem Ammo- niak nieder. Die Oxyde und niedergeschlagenen Hydrate sind sehr aktiv; sie enthalten immer noch ein wenig Actinium. Die filtrierte Lösung wird mit Soda niedergeschlagen. Die niedergeschlagenen Karbonate der Erdalkalien werden ge- waschen und in Chloride verwandelt. Diese Chloride werden zur Trockenheit eingedampft und mit konzentrierter reiner Salzsäure gewaschen. Das Chlorcalcium wird fast vollständig gelöst, während das radiumhaltige Chlorbaryum unlöslich bleibt. Die obenstehende Lösung enthält infolgedessen den Kalk und kann etwas Radium mit sich führen. Man schlägt sie mit Schwefelsäure nieder. Nach und nach setzt sich ein sehr aktives Sulfat ab, das man einer neuen Behandlung unterwirft. Das in konzentrierter Salzsäure unlösliche radiumhaltige Chlorbaryum wird durch Wasser wieder auf- genommen. Die Lösung wird abermals durch Natrium- karbonat niedergeschlagen. Die gewaschenen Karbonate der Erdalkalien werden diesmal mit Bromwasserstoffsäure be- handelt, um sie in Bromide zu verwandeln. Nach dieser langen Reihe von Vornahmen gewinnt man pro Tonne verarbeiteten Urstoffes 8 bis 10 kg radium- haltiges Baryumchlorid, dessen Aktivität ungefähr 60 mal größer als die des metallischen Urans ist. Dieses Chlorid ist reif zur Fraktionierung. 3. Fraktionierung der radiumhaltigen Baryumsalze. Durch die Fraktionierung sollen an Radium mehr oder minder reiche radiumhaltige Baryumchloride gewonnen werden. Das angewendete Verfahren besteht darin, das Bromidgemisch einer Reihe von Kristallisationen zunächst in reinem, dann in einem mit Bromw^asserstoff vermischten
    Wasser zu unterwerfeD. Man benutzt die Differenz der Löslichkeiten der beiden ßromide, da das Bromid des Radiums weniger löslich ist als das des Baryums. Bei Beginn ihrer Untersuchungen über die Trennung des Radiums führten Herr und Frau Curie die Fraktionie- rungen an den Chloriden aus. Giebel hat indessen erkannt, daß die Trennung des Baryums und Radiums durch fraktio- nierte Bromidkristallisationen viel vorteilhafter wäre, nament- lich zu Anfang der Fraktionierung. Die Bromide werden in destilliertem Wasser aufgelöst und die Lösung bei Siedehitze zur Sättigung gebracht. Hierauf läßt man sie unter Abkühlung in einem bedeckten Gefäß kristallisieren. Auf diese Weise erhält man auf dem Boden schöne Kristalle, die man durch Abgießung von der obenauf schwimmenden Flüssigkeit abscheidet. Diese Kristalle sind ungefähr fünfmal aktiver als Chloridlösung. So hat man denn das Salz in zwei Teile zerlegt, an welchen man dieselbe Operation genau wiederholt. Die Lösung der Bromide wird verdampft und heiß zur Sättigung gebracht; die Salze werden abermals gelöst und dann wiederum zur Kristallisation gebracht. Sind die Kristallisationen beendigt, so hat man vier neue Teile vor sich. Die obenauf schwimmende Lösung des aktivsten Teiles (Kristalle) wird mit den Kristallen des am wenigst aktiven Teiles (Lösung) vereinigt; diese beiden Substanzen haben sichtlich die gleiche Aktivität. So hat man nun drei Teile, die einer gleichen Behandlung unter- zogen werden. Die Fraktionierung wird stets nach der- selben Methode fortgesetzt. Nach jeder Operationsreihe wird die aus einem Teile herrührende gesättigte Lösung auf die von dem folgenden Teile herrührenden Kristalle geschüttet. Daraus folgt, daß die mehr und mehr aktiven Produkte und die weniger und weniger aktiven Produkte einen Verlauf im umgekehrten Sinne nehmen. Nun läßt man aber nicht etwa die Zahl der Auf- teilungen ins Unendliche wachsen. Wenn die verarmten
    Produkte (Schluß der Fraktionierung) nur noch eine un- bedeutende Aktivität besitzen, läßt man sie weg. Ebenso ist es mit den angereicherten Teilen (Kopf der Fraktionierung), wenn die gewünschte Anzahl der Teile erzielt worden ist. Man arbeitet dann mit einer ständigen Anzahl von Teilen. Man scheidet fortwährend und zwar nach Maßgabe der Zahl der Fraktionierungen einerseits sehr wenig aktive, ander- seits sehr radiumreiche Produkte aus. Die geringe Stofifmenge, über welche man heutzutage verfügt, hat nicht erlaubt, die chemischen Eigenschaften der Radiumsalze vollkommen zu prüfen. Das Studium dürfte zweifellos zu einigen interessanten Modifikationen hinsichtlich der Geschwindigkeit der Darstellung dieser Körper führen. Man hat eine gewisse Anzahl Salze, Bromid, Chlorid, Nitrat, gewonnen, allein man hat noch kein Radium in metallischem Zustande präpariert. Und doch würde es leicht sein, diese wenig Interesse bietende Darstellung nach der von Bunsen für Baryum angewendeten Methode aus- zuführen. Dritter Abschnitt. Eigenschaften der Radiumsalze. Chemische Eigenschaften. Das so gewonnene Radiumchlorid hat eine ungefähr million- mal größere Aktivität als das metallische Uran. Alle Radium- salze wie Chlorid, Nitrat, Karbonat, Sulfat haben das gleiche Aussehen wie Baryumsalze, wenn sie in festem Zustande dargestellt sind; sie erscheinen weiß. Jedoch färben sie sich mit der Zeit gelb und sogar violett. Vom chemischen Gesichtspunkte aus haben alle Radium- salze durchaus den entsprechenden Baryumsalzen vergleich- bare Eigenschaften, jedoch sind Radiumchlorid und -bromid weniger löslich als Baryumchlorid und -bromid. Das ist